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PROGRESS REPORT 

SUMEX-AIM Resource Progress Report - Year 05 

This annual report covers work performed under NIH Biotechnology Resources 
Program grant RR-785 supporting the Stanford University Medical Experimental 
computer (SUMEX) research resource for applications of Artificial Intelligence in 
Medicine (AIM). It spans the year from Nay 1977 - April 1978. 

2 RESOURCE OPERATIONS 

2.1 PROGRESS 

2.1.1 RESOURCE SUMMARY AND GOALS 

The SUMEX-AIM project is a national computer resource with a dual mission: 
a) the promotion of applications of artificial intelligence (AI) computer science 
research to biological and medical problems and b) the demonstration of computer 
resource sharing within a national community of health research projects. The 
SUMEX-AIM resource is located physically and administratively in the Stanford 
University Medical School and serves as a nucleus for a community of medical AI 
projects at universities around the country. SUNEX provides computing facilities 
tuned to the needs of AI research and communication tools to facilitate remote 
access, inter- and intra-group contacts, and the demonstration of developing 
computer programs to biomedical research collaborators. 

Artificial Intelligence research is that part of Computer Science concerned 
with the symbol manipulation processes that produce intelligent action (1). By 
‘lintel 1 igent action” is meant an act or decision that is goal-oriented, is 
arrived at by an understandable chain of symbolic analysis and reasoning steps, 
and utilizes knowledge of the world to inform and guide the reasoning. 

Some scientists view the performance of complex symbolic reasoning acts by 
computer programs as the sine qua non for artificial intelligence programs, but 
this is necessarily a limited view. 

(1) For recent reviews to give some perspective on the current state of AI, 
see: (i) Boden, M., “Artificial Intelligence and Natural Man,” Basic Books, New 
York, 1977; (ii) Feigenbaum, E-A., “The Art of Artificial Intelligence: Themes 
and Case Studies of Knowledge Engineering,” Proceedings of the Fifth 
International Conference on Artificial Intelligence, 1977; (iii> Ninston, P-H., 
“Artificial Intel 1 igence”, Addison-Wesley Pub1 ishing Co., 1977; and (iv) Nilsson, 
N.J., “Artificial Intelligence”, Information Processing 74, North-Holland Pub. 
co. (1975). An additional overview of research areas and techniques in AI is 
being developed as an “Artificial Intelligence Handbook” under Professor E, A. 
Feigenbaum by computer science students at Stanford (see page 123 for a status 
report and Appendix I for a current outline). 
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RESOURCE SUMMARY AND GOALS Section 2.1.1 

Another view unifies AI research with the rest of computer science. It is 
a simplification, but worthy of consideration. The potential uses of computers 
by people to accomplish tasks can be “one-dimensionalized” into a spectrum 
representing the nature of the instructions that must be given the computer to do 
its job; call it the WHAT-TO-HOW spectrum. At the HOW extreme of the spectrum, 
the user supplies his intelligence to instruct the machine precisely HOW to do 
his job, step-by-step. Progress in computer science may be seen as steps away 
from that extreme “HOW” point on the spectrum: the familiar panoply of assembly 
languages, subroutine libraries, compilers, extensible languages, etc. illustrate 
this trend. 

At the other extreme of the spectrum, the user describes WHAT he wishes the 
computer9 as his instrument, to do for him to solve a problem. He wants to 
communicate WHAT is to be done without having to lay out in detail all necessary 
subgoals for adequate performance yet with a reasonable assurance that he is 
addressing an intelligent agent that is using knowledge of his world to 
understand his intent, complain or fill in his vagueness, make specific his 
abstractions, correct his errors, discover appropriate subgoals, and ultimately 
translate WHAT he wants done into detailed processing steps that define HOW it 
shall be done by a real computer. The user wants to provide this specification 
of WHAT to do in a language that is comfortable to him and the problem domain 
(perhaps English) and via communication modes that are convenient for him 
(including perhaps speech or pictures). 

The research activity aimed at creating computer programs that act as 
‘lintel 1 igent agents” near the WHAT end of the WHAT-TO-HOW spectrum can be viewed 
as the long-range goal of AI research. Historically, AI research has been the 
primary vehicle for progress toward this objective, although a substantial part 
of the applied side of computer R&D has related goals, if an often fragmented 
approach. Unfortunately, workers in other scientific disciplines are generally 
unaware of the role, the goals, and the progress in AI research. Current1 y 
authorized projects in the SUMEX community are concerned in some way with the 
design of ‘lintel 1 igent agents” applied to biomedical research. The tangible 
objective of this approach is the development of computer programs which, using 
formal and informal knowledge bases together with mechanized hypothesis formation 
and problem solving procedures, will be more general and effective consultative 
tools for the clinician and medical scientist. The systematic search potential 
of computerized hypothesis formation and knowledge base utilization, constrained 
where appropriate by heuristic rules, empirical data, or interactions with the 
user, has already produced promising results in areas such as chemical structure 
elucidation and synthesis, diagnostic consultation, and mental function modeling. 
Need1 ess to say, much is yet to be learned in the process of fashioning a 
coherent scientific discipline out.of the assemblage of personal intuitions, 
mathematical procedures, and emerging theoretical structure of the “analysis of 
anal ysi s” and of problem solving. State-of-the-art programs are far more 
narrowly specialized and inflexible than the corresponding aspects of human 
intelligence they emulate; however, in special domains they may be of comparable 
or greater power, e.g., in the solution of formal problems in organic chemistry 
or in the integral calculus. 

An equally important function of the SUMEX-AIM resource is an exploration 
of the use of computer communications as a means for interactions and sharing 
between geographically remote research groups engaged in biomedical computer 
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Section 2.1.1 RESOURCE SUMMARY AND GOALS 

science research. This facet of scientific interaction is becoming increasingly 
important with the explosion of complex information sources and the regional 
specialization of groups and facilities that might be shared by remote 
researchers (see Appendix II on page 223). Our community building role is 
based upon the current state of computer communications technology. While far 
from perfected, these new capabilities offer highly desirable latitude for 
collaborative linkages, both within a given research project and among them. 
Several of the active projects on SUMEX are based upon the collaboration of 
computer and medical scientists at geographically separate institutions; separate 
both from each other and from the computer resource. The network experiment also 
enables diverse projects to interact more directly and to facilitate selective 
demonstrations of available programs to physicians, scientists, and students. 
Even in their current developing state, communication facilities enable effective 
access to the rather specialized SUMEX computing environment and programs from a 
great many areas of the United States (even to a limited extent from Europe). In 
a similar way, the netuork connections have made possible close collaborations in 
the development and maintenance of system software with other facilities. 

As we complete the first 5-year term of the SUMEX-AIM resource grant, we 
can report that our initial technical task has been achieved. We have collected 
and implemented an effective set of hardware and software tools to support the 
development of 1 arge, complex AI programs and to facilitate communications and 
interactions between user groups. We have substantially increased the roster of 
user projects (from an initial 5) to 15 current major projects plus a group of 
pilot efforts. Many of these projects are built around the communications 
network facilities we have assembled; bringing together medical and computer 
science collaborators from remote institutions and making their research programs 
available to still other remote users. As discussed in the sections describing 
the individual projects, a number of the computer programs under development by 
these groups are maturing into tools increasingly useful to the respective 
research communities. The demand for production-level use of these programs has 
surpassed the capacity of the present SUMEX facility and has raised the general 
issues of how such software systems can be optimized for production environments, 
exported, and maintair,ed. 

A number of significant events and accomplishments affecting the SUMEX-AIM 
resource occurred during the past year: 

11 Professor Lederberg has been the principal investigator and chairman of 
the SUMEX-AIM Executive Committee during the past 5 years. He has now 
been named president of Rockefeller University, effective July 1, 1978. 
He will be succeeded as SUMEX principal investigator by Professor Edward 
Feigenbaum, who is chairman of the Stanford Computer Science Department 
and has been closely associated with the resource since its inception. 
The coordination of project activities with medical research is the 
responsibility of Professor Stanley Cohen, Dr. Lederberg’s successor as 
chairman of the Department of Genetics in the Stanford Medical School. 
Professor Lederberg will maintain close ties with these activities as 
chairman of the SUMEX-AIM Executive Committee and through his plans to 
encourage AI applications work at Rockefeller. 

2) The SUMEX renewal application submitted last year at this time has been 
reviewed and approved by the National Advisory Research Resources Council. 
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RESOURCE SUMMARY AND GOALS Section 2.1.1 

Our proposed renewal term of 5 years was reduced to 3 years in view of the 
management changes in progress. 

3) We have made a number of upgrades to the SUPlEX faci 1 i ty hardware. and 
software systems to enhance throughput and to better control the 
allocation of resources. We are also establishing a connection to the 
commercial TELENET network to explore more cost-effective ways to meet 
community communications needs. 

41 We have made progress in the investigation of alternative schemes for the 
export of programs. A demonstration of the machine-independent MAINSAIL 
system is nearing completion for the initial set of target machines. The 
DEC 2020 system, formally announced early this year, provides a relatively 
inexpensive software-compatible machine for export or expansion of 
computing capacity for small research groups. 

5) The progress of SUMEX-AIM user projects in the development of their 
respective programs is reported by the individual investigators. We have 
worked hard to meet their needs and are grateful for their expressed 
appreciation. 
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Section 2.1.1 RESOURCE SUMMARY AND GOALS 

Valediction 1 Personal remarks & J. Lederberq 

While Ed Feigenbaum and I cheerfully accept the full responsibility that is 
entailed by our roles as co-investigators of this resource project, we are 
embarrassingly aware how much of the effort has been the work of others. Cho ices 
for praise are always invidious, but I have no difficulty in singling out Tom 
Rindfleisch as the one person who deserves the most particular credit for the 
success of this program. His technical insight and finesse in the system design 
and implementation, and in the management of the resource staff are measured by 
the visible efficiencies and clarity of documentation of the resource. He is 
also preeminently responsible for the drafting of these reports and for managing 
our fortunes through all the complexities of federal and university 
accountability, and our obligations to local and national users. 

Tom would be the first to insist on acknowledging the dedicated support of 
the administrative, programming and engineering staffs: I mention Carole Miller 
and Karen Carpenter, Rainer Schulz and Andy Sweet-, and Nick Veizades as 
representatives of the several groups of veterans who have been part of SUMEX-AIM 
from its inception, and of the most conscientious team of my experience. 

For my own role, I have leaned heavily on my friend and associate, Ed 
Feigenbaum, and it is gratifying to be so confident that the work we started 
together in building SUMEX-AIM will continue under his able stewardship. Elliott 
Levinthal and Bruce Buchanan did a great deal to make all this possible, and to 
make the tasks that Ed and I will have taken on not just manageable but fun. 
Carl Djerassi, in chemistry, was an indispensable fomenter of the scientific 
collaborations. Stan Cohen is making an equally great contribution, both by 
succeeding me as chairman of the genetics department, and by his continued 
promulgation of MYCIN and by serving as coordinator for medical school research 
interests in SUMEX. 

But this list would eventually embrace a large part of Stanford University, 
a network of personal and interdisciplinary connections that constitutes a 
seamless web, a treasure for my own experience and recollection, -- but one that 
is perforce hard to fairly acknowledge, and even harder to sever myself from. 

Fortunately, the communications net offers a way to soften that severance, 
and I will seek every opportunity to use it to stay in the closest contact with 
the affairs of SUMEX-AIM that the duties of my new situation allow. My continued 
association with Stanford and with SUMEX-AIM ought to be a self-exemplifying 
demonstration of the capabilities for community-building and for sustaining the 
human relationships in scientific effort that have been our highest hopes for 
these new, high technologies. 

The realism of these expectations has been substantially tested already in 
the way that the Executive Committee of SUMEX-AIM, the user community, and Bi 11 
Baker and his colleagues at NIH/BRP, have been able to work together effectively 
and constructively in making this enterprise truly a national resource. 

I look forward to continuing to be a part of a team like that! 
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TECHNICAL PROGRESS Section 2.1.2 

2.1.2 TECHNICAL PROGRESS 

The following material covers SUMEX-AIM resource activities over the past 
year in greater detail. These sections outline accomplishments in the context of 
the resource staff and the resource management. Details of the progress and 
plans for our external collaborator projects are presented in Section 4 
beginning on page 61, 

2.1.2.1 FACILITY HARDWARE 

Over the past year9 several significant changes have been made to the SUMEX 
hardware configuration and associated system software: 

1) Core memory was doubled by adding 256K words 
2) The file and tape system hardware was upgraded 
3) A connection to TELENET is being implemented 

The memory and file/tape upgrades have substantially improved system throughput 
and efficiency as discussed below. The TELENET connection is being established 
for evaluation as a possibly more cost-effective means for meeting community 
communication needs (see page 16). The current system hardware configuration is 
diagrammed in Figure 1 on page 9. 

INTRODUCTION 

The SUHEX-AIM facility has been operating at capacity in terms of prime- 
time computing throughput and user file space for the past 2 years as documented 
in our annual reports (see for example pp 4-8 of the 1976 report). This 
condition has constrained the growtfi of the AIM community and our ability to 
bring AI programs nearing operational status in contact with the potential 
external user communities while continuing to support on-going program 
development efforts. We have taken active steps to try to transfer prime time 
loading to evening and night hours including shifting personnel schedules 
(particularly for Stanford-based projects), to control the allocation of CPU 
resources between various user communities and projects, and to encourage jobs 
not requiring intimate user interaction to run during off hours by developing 
batch job facilities. Despite these efforts, our prime time loading has remained 
very high. Perhaps the most significant effect of the resulting poor response 
time is the deterrence of interactions with medical and other professional 
collaborators experimenting with available AI programs, whose schedules cannot be 
adjusted to meet computer loading patterns (see for example the MYCIN report in 
Section 4.2.6 on page 163). 

Two years ago, the Executive Committee gave approval for the augmentation 
of SUMEX-AIM computing capacity by adding a second CPU. The decision for the CPU 
was made as a trade-off betueen adding memory and/or CPU to maximize capacity 
enhancement within the resources available (see the 1976 annual report for a 
discussion of these trade-offs). We implernented the dual processor system in the 
spring of 1976 and brought it on line in June. The additional capacity was put 
to use very quickly as reflected in system usage and loading data summarized in 
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Section 2.1.2.1 TECHNICAL PROGRESS 

Figure 6 through Figure 8. With the common criterion that users have pushed 
both the single and dual processor systems to the 1 irnits of useful work in terms 
of prime time responsiveness, it is clear that the second processor substantially 
increased throughput. The “tolerable” peak load average increased, the number of 
jobs on the system,increased, and the number of delivered CPU hours increased. 
At the same time (as predicted) the overhead per machine rose dramatically as 
shown in Figure 9 and Figure 10. The overhead increases came principally in the 
category of I/O wait (total scheduler time and time waiting for a runnable job to 
be loaded in core) and in the time processing pager traps. Another factor, not 
explicitly shown in these data (because we only have a 1 msec clock), is the 
added time spent at interrupt level servicing drum swapping. This adds another 
lo-15% estimated overhead. 

After the dual processor augmentation, SUMEX-AIM computing capacity again 
became overloaded. This continuing saturation has raised serious discussion 
about the scope of computing needs of the AIM community and possible 
justification of additional PDP-10 scale machines to be added to the AIM network. 
Several specific proposals have been submitted for additional user nodes. We 
expect additional capacity to be available through the Rutgers resource by the 
end of this summer and support expansions at other AIM nodes as justified by 
local and community needs. From the SUMEX viewpoint, we have attempted to do 
everything feasible and economically justified within current budgets to maximize 
the use of the existing hardware for productive work. After the dual processor 
augmentation, the obvious remaining CPU resource to be tapped was to reduce the 
high dual processor overhead. 

A parallel saturation problem existed for a long time in file space 
commitments. We had queued requests from numerous projects for increases in file 
space including INTERNIST, Higher Mental Functions, Language Acquisition 
Modeling, DENDRAL, Chemical Synthesis, MYCIN, and several pilot projects. We did 
not have additional space to allocate to meet these needs and our DEC RP-1OC 
controller configuration was full (7 drives on-line and one available for 
backup). We had taken an active role in trying to optimize use of available 
space hy limiting the total space available to projects, limiting the number of 
versions of experimental files kept on the system, and encouraging the use of 
tape or Datacomputer archive services for files not needed on-line routinely. We 
still were unable to adequately provide for the growing needs of existing 
projects or meet the bare space needs of new projects getting started. 

The following plan was presented to the Executive Committee to increase the 
capacity of the SUMEX facility configuration by 1) adding memory to optimize dual 
processor utilization and 2) redesigning the file system (including the tapes 
used to backup and archive user files) to meet increased demands within up-to- 
date technology. This plan was approved in June 1977 and implemented in 
September 1977. 
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Section Z-1.2.1 TECHNICAL PROGRESS 

MEMORY AUGMENTATION 

There is a close interaction between memory size, CPU capacity, and 
secondary swapping storage in determining the performance of a demand-paged 
system like TENEX (see 1976 annual report pp 4-10). Our system as initially 
designed was quite well balanced in these respects. As the SUMEX-AIM computing 
load reached capacity, the choices for augmentation dictated either memory or CPU 
as we had insufficient funding to augment both. We chose CPU as the most user- 
effective means of providing more capacity at that time. However, as pointed out 
then, the added CPU power has the effect of increasing the system overhead in 
order to manage the increased number of jobs using the system within available 
memory. This shows up in increased pager trap time, interrupt-handling overhead 
for drum swaps, requirements for additional secondary swap space to accommodate 
the added jobs, and I/O wait time to fetch a runnable job into core as 
illustrated in Figure 9 and Figure 10. 

Recorded data on dual processor performance show that, during prime time 
loading, the overhead in I/O wait time, pager trapping, and drum interrupt 
handling effectively amounted to about 40-50% of the second CPU (actually all of 
the I/O traffic is on one of the machines whereas other overhead for paging and 
I/O wait is distributed between them). This lost capacity was recoverable by 
adding memory. The effect of increasing memory is to allow more jobs in core at 
once (larger "balance set") and larger working sets to reduce overhead factors. 
This not only improves efficiency but smooths out user interaction since the 
larger balance set makes it more likely that pages for a given job will be in 
core when needed for teletype service. The 256K memory configuration only 
afforded a balance set of 4-5 jobs, so that with a load average of 7-10 during 
prime time, about 4-5 jobs had to be completely swapped out at a given time and 
hence could not get any service. The larger balance set means fewer jobs swappec 
out for a given load average. 

The added memory size also allows more effective use of slower swapping 
space, particularly with the parallel disk system upgrade to the faster 3330 
technology as outlined below. Having more jobs in the balance set makes it more 
likely that a runnable job is there and reduces the page fault rate so that 
swapping between memory and the slower store can occur without loss. Time 
previously wasted as I/O wait to get a disk-swapped job back into memory is 
reduced. 

We considered a number of memory vendors and also looked into a new "slow" 
AMPEX memory which trades speed (3 usec versus 1 usec) for capacity (lOOOK words 
versus 256K words). This memory could be configured either in the form of a 
random access memory (RAM) or a block transfer ("drum-like") device. In essence 
the "block transfer" mode would add another layer in the hierarchy of storage 
intermediate between drum and high speed memory. We felt this type of "drum" 
memory would not be the most advantageous solution as the system was already 
burdened waiting for runnable jobs to execute and handling a high overhead of 
page swapping. The CPU time for the management of page swapping is non-trivial 
and, based on measurements of swapping activity, the overhead in managing storage 
on the KI-10 rivals the rotational latency of the drum so the fast swapper would 
not do that much good. The dominant factor in the overhead is that we had a 
relatively small executing store for our processing capacity so that under heavy 
loads the system thrashes trying to service runnable jobs for all the users. 
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TECHNICAL PROGRESS Section 2.1.2.1 

Similarly, configuring such slow memory as RAM for our non-cache KI-10's 
would ~1 ow the processors down by a factor of 3 when executing code from the slow 
memory. It would be equally costly to rearrange pages between fast and slow 
memory. Without a special transfer device, the CPU would have to do the 
transfers limited by the slow memory speed, For a cache system (like the KL-101, 
this problem may be overcome by the firmware management of the movement of active 
memory locations between the very fast cache memory and the slower memory (4-word 
parallel transfers). 

Thus we felt the most effective remedy was more high speed memory. We 
chose AMPEX memory from among the vendors reviewed as the best trade-off between 
performance, price, packaging, and maintainability. The additional 256K of 
memory was brought on-line in September 1977. From the data shown in Figure 9 
and Figure 10, it is clear that the predicted reduction in system overhead was 
immediately achieved. The following table shows measurements of average 
instruction times comparing our AMPEX and DEC MF-10 memories. Also included for 
comparison are data for a Systems Concepts memory installed at the IMSSS KI-10 
facility at Stanford: 

AMPEX DEC MF-10 SC MF-10 
MOVE1 1.20 1.21 0.97 
MOVE 1.54 1.64 1.24 

These data give the time in microseconds to execute the instructions shown based 
on the DEC timing diagnostic and normalizing the times to a "standard" 15 foot 
memory cable length. The MOVE1 instruction shous the relationship between the 
basic memory access times and the MOVE instruction illustrates the effects of KI- 
10 "look ahead" with overall memory cycle time. Currently our AMPEX memory is 
timed to have essentially the same access time as the MF-10's but it is actually 
capable of somewhat faster operation. We are planning to attempt to reconfigure 
the memories this summer to take better advantage of the AMPEX speed. This may 
recover about 80 nanoseconds per access. This will still not bridge the timing 
difference between the AMPEX and the Systems Concepts memories. Systems Concepts 
offers a technically advantageous memory in terms of speed. Our choice of 
vendors was based on our own evaluation of issues like resale potential, 
maintainability, and management responsiveness, taking into account our 
experience with Systems Concepts in purchasing their disk channel interface (see 
below). 

It should also be mentioned that the installation of the additional 256K of 
memory required modifications to the MX-10 memory multiplexor to accommodate 22- 
bit addresses and to the TYMBASE to be able to operate on a KI-10 style memory 
bus supporting more than 256K of memory. 

DISK/TAPE RECONFIGURATION 

Disk technology has changed rapidly in recent years. At the time we bought 
the initial SUMEX configuration, taking into account the discount DEC gave on the 
system purchase and maintainability, the DEC RP-03 system we bought was the best 
choice. Since then double-density 3330 technology has become well established 
(prices for IBM-compatible equipment were cut almost in half in 1976 alone!) and 
even higher densities are coming along. Given the relatively low incremental 
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cost (for used equipment), we added RP-03 drives until filling the capacity of 
the controller. But with the added dernands of community projects. a better long 
term solution necessitated upgrading from the RP-03 technology. Newer devices 
offer more economical future growth, and faster transfer rates thereby further 
decreasing system overhead. 

Our tape system was in an even more advanced part of the age curve. We 
have not emphasized individual user tape services at all but tapes are critical 
to system operation for file system backup and user file archiving. We minimized 
the initial investment in tape drives to the advantage of other parts of tfie 
system. To accommodate the larger file system and to improve system operations 
and efficiency, the upgrade in file systern also required a parallel upgrade in 
tape service. An additional advantage to upgrading the tape system was to move 
the I/O interface from the I/O bus to a direct memory interface thereby reducing 
system interrupt loading during prime time tape/file system operations. 

The most attractive approach to file/tape system upgrade was to adapt a DEC 
memory port to look like an IBM selector or block multiplexer channel and then to 
take advantage of the substantial price competition in the IBM-compatible 
peripheral market. The capacity of a double-density 3330 disk drive is equal to 
4 RP-03’s. Thus bringing 3 new drives on line almost doubles the on-line 
capacity. After investigating alternative vendors, we selected a system using a 
System Concepts SA-10 channel adaptor, Calcomp 235-11 disks, and Calcomp 347A 
tapes. This system was installed and brought on line at the same time as the 
memory augmentation in September 1977. 

'This system has substantially alleviated file capacity pressure and made 
possible much smoother backup operations. With the faster tape speed, we no 
longer take the system down for pack copies Sunday morning but rather do a full 
file system dump to tape. Similarly during the week we do incremental dumps back 
to the previous full dump each day to give quite good backup coverage. We have 
experienced no major technical problems with the new file/tape system; more 
details about impact on system software is given in a later section. 

Unfortunately, we have experienced many frustrations dealing with Systems 
Concepts management in contrast to the high technical quality of their hardware. 
There remain several parts of the SA-10 adaptor that have not been delivered 
including full documentation, maintenance training, cabling to replace that which 
we borrowed for installation, and the device indicator panel. This experience 
led us not to consider Systems Concepts for memory. Few such memories have been 
delivered and it is not clear that we could depend on future maintainability. On 
the other hand, support for the SA-10 is secure in that many are in the field 
with excellent service records and alternative sources exist for SA-10 
maintenance through Calcomp, DEC, or TYMSHARE. 

2.1.2.2 SYSTEM SOFTWARE 

MEMORY EXPANSION ANO FILE/TAPE UPGRADES 

The addition of 25GK of memory and the upgrades of our file/tape system 
necessitated a number of changes in the monitor. TENEX had not fully anticipated 
memory addresses longer than 18 bits and so those places where half-word 
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addresses were assumed had to be fixed. The RP-1OC disk service and TM-10 tape 
service code had to be replaced by code that produces the appropriate IBM channel 
commands. We imported the "standard" BBN SA-10 disk/tape service and 
incorporated it in our dual processor system. Despite the substantial amount of 
work required to incorporate this code into our system, the new hardware and 
monitor came up smoothly on 9/l/77. 

We have encountered a number of bugs during the year, particularly in the 
disk service. The most troublesome one resulted in a deadlock between command 
retry attempts from the CPU and a busy controller state. The 3330 recovery 
procedure implemented in the BBN code appeared to track exactly that used in 
IBM's most recent VS releases. Nevertheless infrequently during internal 
controller error correction attempts, we found the system hung in a loop with the 
controller, when trying to restart commands queued at the time of the error. It 
appears the problem may be in the Calcomp controller microcode but we have not 
been able to get enough information from Calcomp to confirm that. Meanwhile we 
have constructed a software work-around to detect the loop when it occurs and to 
reset the disk channel before proceeding. 

'The new hardware had other ramifications for system software as well. 
DEC's diagnostic system is designed to run off of their disk or magnetic tape 
systems. This capability was lost as a result of the change from DEC hardware so 
that diagnostics had to be loaded from slow DECtape units. We have invested 
considerable effort in bringing system diagnostic facilities back up to a 
workable level; borrowing programs others had written and implementing new ones 
where needed. We have implemented a stand-alone facility to load SAV files from 
the TENEX file system, incorporating full TENEX name recognition features. This 
means that programs can be manipulated and kept on-line in the time-sharing file 
system and then loaded as needed when the machine is down or in stand-alone mode. 
This also provides an easier way to reload the monitor. We have written a fast 
disk pack copy routine for the 3330 packs and have improved the SA-10 diagnostic 
package to check out 512K of memory and to ensure safer testing of disk drives in 
the presence of live file system packs. 

Also with 1600 BP1 tapes available changes were necessary to the tape 
service and TOPS-10 compatibility package to accommodate DEC's extended magnetic 
tape UUO's as well as to be able to fully use the byte packing facilit ies of the 
SA-10 and IBM drives. 

We cant inue to work to improve the efficiency of the system and its 
effectiveness in al locating valuable resources. We have implemented a high 
priority hardware clock to sample monitor and user mode program counter locations 
to find places of abnormally high activity and perhaps inefficiency. This has 
pointed out several "hot spots" in routines where it was obvious on other grounds 
that a substantial amount of time is spent (e.g., drum service, KI page handling 
and teletype service) but there are no clear solutions to these problems with the 
current hardware. 
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SYSTEM LOADING CONTROLS 

We previously implemented a form of “soft” CPU allocation control in the 
moni tar, assisted by a program which adjusts user percentages for the scheduler 
based on the dynamic loading of the system. The allocation control structure 
works based on the scheduler queue system and takes account of the a priori 
allocation of CPU time and that actually consumed. Our TENEX uses a hierarchy of 
five queues for jobs ranging from highly interactive jobs requiring only small 
amounts of CPU time between waits to more CPU intensive jobs which can run for 
long periods without user interaction. These interactive queues (text editing, 
etc.) are scheduled at highest priority without consideration of allocation 
percentages. If nothing is runnable from the high priority queues, the CPU-bound 
queues are scanned and jobs are selected for running based on how much of their 
allocated time has been consumed during a given allocation control cycle time 
(currently 100 seconds>. If no such jobs are runnable, then those that have 
received their allocation of CPU time already are scheduled based on how much 
they are over allocation and how long they have uaited to be run again. This 
system is not a reservation system in that it does not guarantee a given user 
some percentage of the system. It allocates cycles preferentially, trading off 2 
priori allocations with actual demand but does not waste cycles. 

This scheduli,ng scheme does not deal with the problems of system 
overloading during peak periods. At such times (mid-morning and mid-afternoon 
especially), one observes what has been termed “the tyranny of time-sharing”. 
System efficiency and user response time degrade because the system is trying to 
serve more jobs than it has reasonable resources for. Users sit at their 
terminals waiting for the cycles they need to work effectively but there are not 
enough to go around. Ideally the system should have a response time keyed to a 
typical human interactive response interval. This imp1 ies a 1 imit on the number 
of active job slots that the system can accommodate simultaneously in order to 

We have attempted to control system overloading in a somewhat different way 
to better manage user time and to allow us to better apportion system capacity 
between communities and projects during heavy load. Each project gets its pro 
rata share of the active job slots the system can accommodate. Rather than allow 
many users to ineffectively vie for each project’s slots (as in the pie-slice 
system), we ask selected users within each group to restrict their use for 
periods of l/2 hour so that those remaining can work effectively within the 
project aliquot. Allocation of active job slots is made on the basis of relative 
community and project percentage allocations (assigned by the AIM Executive 
committee). Within each project slots are allocated either on a round-robin 
basis or taking into account optional project priorities among users. Under 
overload conditions, active jobs outside of the available slots are asked to slow 
down, thereby holding the load within tolerable limits. If such jobs do not 
voluntarily cooperate, they may be forced to comply. 
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An overload condition is defined to be one in which the overall load 
average exceeds a threshold (currently 7.51, significantly more jobs are runnable 
than there is core for, or excessive page faulting is occurring. Outside of 
periods of overload, the previous "soft" percentage scheduling scheme is applied. 
Also thresholds for overload conditions may be dynamically adjusted to assure 
good system response during a demo. 

This system has been in operation for approximately one month during which 
time we have experimented with various threshold adjustments and observed its 
effects on user behavior. During this early period, we have not placed any 
controls on system use by the AIM community projects since they have historically 
been below their quota for system use. It is still early to tell quantitatively 
what its effect will be; system usage fluctuations are such that we uill have to 
observe operations for several months before drawing conclusions. However, 
qualitatively it seems to be holding system loading within tolerable bounds and 
allocating capacity as apportioned between the various communities and projects. 

OTHER ENHANCEMENTS 

Other areas of system software development include the EXECutive program, 
the BSYS program for file archiving and retrieving, the printer spoolers, the 
CHECKDSK program for verifying file system integrity, and numerous smaller 
utility extensions and bug fixes. We have continued to improve the EXEC in such 
areas as the DIRECTORY command (to display last file reader and temporary files), 
the MAP command (to handle long files), a new INITIALIZE command (to restart the 
EXEC after errors), smoothing out multi-directory search paths using features of 
the new GTJFN, adding wild card and question mark facilities to the file 
retrieval INTERROGATE command, making the command for changing file protection 
more mnemonic, and restoring terminal modes correctly after a forced detach 
(e.g., uith a dropped line or network disconnect). 

We have added a facility to the BSYS program to automate the restoration of 
requested files from tape, avoiding the earlier error-prone and time-consuming 
typing of individual restore commands. We have completely rewritten the line 
printer spoolers to more efficiently and uniformly handle the local and remote 
printers, to add facilities for "unlisting" a file listed by mistake, and 
improving the marking of listing boundaries to ease operator separation of 
listings for various users. 

We have imported a new version of CHECKDSK initially written at BBN and 
have incorporated local facilities for more extensive file system integrity 
checking. This version presorts file index block addresses and scans for errors 
using more sequential disk I/O. Several forks are started, one for each drive. 
These keep the disk channel as busy as possible while performing the check 
computations. This improvement has reduced the time to scan the file system from 
20 to 6.5 minutes. 
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2.1.2.3 NETWORK COMMUNICATION FACILITIES 

A highly important aspect of the SUMEX system is effective communication 
with remote users. In addition to the economic arguments for terminal access, 
networking offers other advantages for shared computing. These include improved 
inter-user communications, more effective software sharing, uniform user access 
to multiple machines and special purpose resources, convenient file transfers, 
more effective backup, and co-processing between remote machines. Until now, we 
have based our remote communication services on two networks - JYMNET and 
ARPANET. These uere the only networks existing at the start of the project which 
allowed foreign host access. Other commercial network systems (notably JELENEJ) 
have come into existence and are growing in coverage and services. 

Users asked to accept a remote computer as if it were next door will use 
local telephone call to the computer as a standard of comparison. Current 
network terminal facilities do not quite accomplish the illusion of a local ca 
Data loss is not a problem in network communications - in fact with the more 
extensive error checking schemes, data integrity is higher than for a long 
distance phone link. On the other hand, networking relies upon shared communi 
use of telephone lines to procure widespread geographical coverage at 
substantially reduced cost. However, unless enough total line capacity is 

a 
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provided to meet peak loads, substantial queueing and traffic jams result in the 
loss of terminal responsiveness. Limited responsiveness for character-oriented 
JENEX interactions continues to be a problem for network users. 

TYMNET: 

Networks such as JYMNET are a complex interconnection of nodes and lines 
spanning the country (see Figure 2 on page 18). The primary cause of delay in 
passing a message through the network is the time to transfer a message from node 
to node and the scheduling of this traffic over multiplexed lines. This latter, 
effect only becomes important in heavily loaded situations; the former is always 
present. Clearly from the user viewpoint, the best situation is to have as few 
nodes as possible between him and the host - this means many interconnecting 
lines through the network and correspondingly higher costs for the network 
manager. TENEX in some ways emphasizes this conflict more than other time- 
sharing systems because of the highly interactive nature of terminal handling 
(e.g., command and file name recognition and non-printing program commands as in 
text editors or INTERLISP). In such instances, individual characters must be 
seen by the host machine to determine the proper echo response in contrast to 
other systems where only "line at a time" commands are allowed. We have seen 
little improvement in TYMNET service over the past year although the cost of 
service has risen sharply. We purchase TYMNET services through a volume contract 
the National Library of Medicine has with TYMNET. The cost has gone from 
approximately 82.90 to 46.09 per connect hour. Because of this increase, we are 
investigating alternative sources of network service; in particular TELENET. 

We have had a number of technical problems with the TYMNET this past year. 
Internally they changed some of the protocol involved in the TYMBASE connection 
we use. They neglected to tell us about these changes though and the problems 
that resulted were very hard to track down. From the user viewpoint, connections 
were dropped frequently. From the system viewpoint, we could not tell if the 
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problems were subtle results of the recent memory and file system hardware 
change. That change required a modification in the TYMBASE to accommodate the 
new memory bus conventions. This took months to isolate but the TYMNET interface 
is finally running reliably again after much user frustration. 

ARPANET: 

Current ARPANET geographical and logical maps are shown in F 
Figure 4 on page 19. Consistent with agreements with ARPA and the 
Communication Agency, we are enforcing a policy that restricts the 
to users who have affiliations with ARPA-supported contractors and 
system/software interchange with cooperating JENEX sites. We have 
good working relationships with other sites on the ARPANET for syst 

gure 3 and 
Defense 
use of ARPANET 

maintained 
em backup and 

software interchange. Such day-to-day working interactions with remote 
facilities would not be possible without the integrated file transfer, 
communication, and terminal handling capabilities unique to the ARPANET. 

TELENET 

We recognize the importance of effective communication facilities for 
SUMEX-AIM users and are continuously looking for ways to improve our existing 
facilities. A year ago we did some preliminary investigations of TELENET 
facilities that have been rapidly expanding this past year (see Figure 5 on page 
21). BBCN has hooked one of their TENEX systems up to TELENET and whereas we 
did not have the same quantitative tools we have for measuring response on the 
TYMNET, we observed TELENET delays at least as long as those encountered on 
TYMNET. We did the reverse experiment by using long distance telephone to 
connect from the TELENET node in Washington, D.C. to the SUMEX machine in 
California and observed the same sort of delays reaching several seconds per 
character. The TELENET has many attractive features in terms of a symmetry 
analogous to that of the ARPANET for terminal traffic and file transfers and 
being a commercial network, it does not have the access restrictior.s of the 
ARPANET. As indicated above, the cost of using the TYMNET has increased this 
past year so that TELENET rates appear to be substantially lower for supporting 
community communication services. The National Library of Medicine has a 
contract with TELENET which includes significant cost advantages through 
combining our use with NLM use to achieve a high volume discount. As a result of 
discussions with the AIM Executive Committee and BRP, we are in the process of 
implementing an experimental connection to TELENET with the view of moving SUMEX 
users to that service if technically effective. 

17 J. Lederberg & E. Feigenbaum 



--.. CArIADA 
---a.-.._ 

“1 “A I :-.. “.-...i lWEXICO 

Figure 2. TYMNET Network Map 



ARPANET GEOGRAPHIC MAP, MARCH 1978 

TYMSHARE - 

SCOTT 

LONDON 

+s+- SATELLITE CIRCUIT 
0 IMP 
IJ TIP 
n PLURIBUS IMP 

(NOTE: THIS MAP DOES NOT SHOW ARPAk EXPERIMENTAL 
SATELLITE CONNECTIONS) 

NAMES SHOWN ARE IMP NAMES, NOT (NECESSARILY) HOST NAMES 
l 

W 

Figure 3. ARPANET Geographical Network Map 



ARPANET LOGICAL MAP, MARCH 1978 

PDP- 10 

PLI 

HAWAII \ 

HOFFETT LBL 

POP-IO 

ILLIAC-Ip 

* 
STANFORD YSUMEX , 

POP-II 

PLI 
SCRL 

‘YMSHARE 

n 

IS.122 AF;bLDpell (TEXAS 

0 IMP 

0 TIP 

& PLURl8US IMP 

m SATELLITE CIRCUIT 

Q VERY DISTANT HOST 

Figure 4. 

CDC7600 

GUNTER MITRE SDAC 

PLEASE NOTE THAT WHILE THIS MAP SHOWS THE HOST POPULATION 
OF THE NETWORK ACCORDING TO THE BEST INFORMATION 
OBTAINABLE. NO CLAIM CAN BE MADE FOR ITS ACCURACY 

HOST COMPUTER CONFIGURATION SUPPLIED BY THE NETWORK 
INFORMATION CENTER 

NAMES SHOWN ARE IMP NAMES, NOT (NECESSARILY 1 HOST NAMES 

ARPANET Logical Network Map 



TELEMET’ GEOGRAPHIC MAP 

MID -I977 

PUERTO RICO 

w 

Figure 5. TELENET Network Map 



Section 2.1.2.4 TECHNICAL PROGRESS 

2.1.2.4 SYSTEM RELIABILITY AND BACKUP 

System reliability has been very good after the installation of the new 
memory and file/tape hardware. There have been a number of problems as detailed 
earlier with the disk system and TYtlNET that have caused more crashes and dropped 
lines than normal. Also in the process of experimenting with speeding up our 
memory configuration, we have caused some unreliability. The table below shows 
monthly downtimes for the past year. 

1977 1978 
NAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR 

CRASHES 
Hardware 12 27 8 18 6 6 14 6 6 5 2 4 
Software 0 0 4 4 2 13 4 10 6 3 
Environmental 1 2 2 2 2 0 0 1111 4 
Unknown Cause 0 2 3 2 3 5 6 5 4 7 3 2 

DOWNTIPIE (Hrs) 
Unscheduled 30 70 34 47 19 19 45 20 17 25 13 15 
Scheduled 41 73 25 83 61 44 31 30 23 15 28 31 

TABLE 1. System Reliability by Month 

In May and June we experienced a substantially higher number of hardware 
crashes which we feel resulted from the system being overheated during an air 
conditioning failure in mid-play. Ultimately an intermittently shorting backplane 
wire was found as well as several intermittent arithmetic unit failures. During 
late July and August we worked on system hardware and software changes 
preparatory to the installation of the additional 256K of memory and the new 
file/tape system hardware. This increased system downtime and unreliability as 
well. Infant mortality problems with the new hardware (AMPEX memory especially), 
caused a number of crashes in August, September, and October. The high number of 
"Unknown" crashes until recently are the result of a number of factors which were 
hard to separate or caused the system to fail in ways that we couldn't 
reconstruct what happened. We feel these resulted from the TYPINET protocol 
problem mentioned earlier, a race condition between the AMPEX and DEC memories, 
disk controller problems, and software bugs. Between September and late October 
we worked on organizing and enhancing system diagnostic capabilities to support 
the new hardware. This required increased downtime. 

2.1.2.5 SOFTWARE EXPORT 

Over the past year we have continued to investigate alternatives for 
software export. The following reports on several of these areas, including 1) 
the availability of small POPlO-like machines, 2) progress in developing the 
MAINSAIL language, and 31 an investigation of possibilities for writing a MYCIN- 
like program using an algorithmic language. 
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SPIALL POPlO-LIKE MACHINES 

Early this calendar year DEC announced a new small machine designated the 
2020. This machine approximates the "small PDP-10" machine we had discussed in 
last year's report. It allows up to 512K of memory, 2 RP-06 disk drive, 2 tape 
drives, a printer, and runs DEC's TOPS-20 operating system. Prices range from 
$150K for a 128K word machine to 6375K for a 512K word machine with two disk 
drive, tapes, and a printer. The unloaded performance of this machine appears to 
be in the range of a KA-10 but only preliminary benchmarks have been run. Lynch 
at SRI has run a simple LISP test program on a range of machines. His test 
creates a large list, randomizes it, and then sorts it. Using a KA-10 with 512K 
of memory as a reference, the performance of various PDP-10 systems is shown in 
the following table. 

KA-10 KA-10 2020 KI-10 KL-1090T 
Function 256K 512K 512K 512K 1024K 

Build List 0.94 1.00 1.20 1.79 5.86 
Rearrange list 0.92 1.00 1.13 1.64 5.20 
Sort List 0.79 1.00 0.89 1.65 4.56 

This test indicates that the 2020 performs at about the same level as the 
KA-10 for a single user. These data do not give a complete picture of 
performance under increasing load, however, and do not fully reflect the 
intrinsically slow arithmetic performance of the 2020. 

We have attempted to run benchmarks of the CONGEN and MYCIN programs to 
compare these machines. We ran squarely into a compatibility problem however. 
We prepared the two benchmarks, ran them on our KI-TENEX system, checked to see 
that they would run on TOPS-20 using SRI’s 1090T system, and asked DEC to run 
them on the 2020. The benchmarks failed to execute because of some system call 
changes DEC had just made to the newest release of TOPS-20 running on the 2020. 
We are just now getting access to a machine running that version of TOPS-20 and 
hope to fix the incompatibility to complete the benchmarks. This experience 
reinforces our belief that increasing incompatibilities will show up between 
TENEX and TOPS-20 that will make software transfer difficult. 

We have had a number of contacts from outside users interested particularly 
in the chemistry AI programs. Such a machine would represent a good solution for 
such groups to gain access to the programs, maintain the necessary security for 
proprietary data storage, and stay abreast of new developments. This type of 
approach is also attractive for providing needed capacity expansion in small 
increments within the AIM community (e.g., for more extensive testing of the 
MYCIN or INTERNIST programs) while maintaining general software compatibility. 
Remote location of such machines within the community may also offer significant 
advantages for human interfaces since terminal handling can be clone locally 
thereby supporting higher speed lines and improved echo interactions for 
recognition, etc. 
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MAINSAIL 

During this past year we have concentrated on six areas: 

1) Implementations 
2) Runtime design 
3) Language design 
4) Compiler design 
5) Documentation 
61 Emulation research 

We have not yet extensively distributed MAINSAIL since it is still undergoing 
development based on our experiences with it locally. We have continued to 
receive many inquiries concerning the progress of our work, with several.projects 
considering using MAINSAIL when it becomes available. 

At present our major concern is MAINSAIL’s efficiency in a small address 
space; in particular, the compiler cannot yet run on a PDP-11. Though it appears 
that computer technology is moving towards large address.spaces, existing 
machines with 32K-word address spaces will persist for many years, and many 
people have indicated an interest in using FlAINSAIL on such machines. The 
difficulty is that MAINSAIL provides features uhich are not easily supported when 
memory is scarce. Over the past year we have gained a better understanding of 
MAINSAIL’s resource requirements, and have taken steps to reduce its implicit use 
of memory. 

Implementations 

We have developed five implementations for two computers: TOPS-10 and TENEX 
for the PDP-10; and RT-11, RSX-llfl and UNIX for the PDP-11. The last two were 
developed during the past year. The others have received varying amounts of bug 
fixes and updates. The TENEX version has been in use for about two years, and 
the RT-11 version for about a year. The TOPS-10 version has been used to a 
lesser extent for about a year. Programs have been run on RSX-llll and UNIX, but 
these implementations are not complete. 

No implementation is in general use; in some cases they have primarily 
served to insure that the runtime design is sufficiently flexible. Each new 
implementation has revealed deficiencies in the design which have since been 
corrected. We will need to implement MAINSAiL on some non-DEC machines before we 
can get an unbiased assessment of the difficulty of creating new implementations. 

Runtime Design 

A new runtime system is now under implementation. It is oriented towards 
execution efficiency and less memory utilization since these are the problems 
with the current PDP-11 implementations. 

A major savings has been made with regard to string constants. In the 
previous implementation, the text of string constants was copied into string 
space uhere it remained throughout execution. Also, the string-constant 
descriptors were allocated in the data sections, which remained in memory as 
well. In the new implementation, the string-constant text remains in the control 
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section, so that it is swapped out of memory along with the control section. 
String-constant descriptors are created each time a string constant is used. 
This usually requires that the text for a string constant be copied into string 
space upon each use. The overall result is that string constants do not tie up 
memory as in the previous implementation, but more time may be spent repeatedly 
copying string constant text into string space. This could also lead to more 
string "garbage" collections. 

The implementation of modules in terms of control sections, data sections, 
and descriptor sections has been altered to save memory. Procedure call, entry, 
exit and return have been redesigned to save code and time. The amount of code 
executed for i/o has been decreased. A new approach to the use of "anonymous" 
modules has been implemented, and the manner in which modules obtain linkage to 
one another has changed. 

The previous implementation required that every module reside in a separate 
file which is opened and closed during execution in order to access the module's 
code. The new implementation provides "runtime libraries" which are files 
containing any number of modules. Each runtime library remains open throughout 
execution. There will be a standard runtime library containing the system 
modules, and another containing the compiler modules. The programmer may also 
contribute runtime libraries. Single-module files remain as before. 

The size of the "kernel" module (which is always resident) has been 
decreased. There is more reliance on incremental initialization of arrays, 
string space, string constants, class descriptors, module pointers and module 
descriptors. This allows some code to be moved out of the kernel into separate 
modules. 

The modules which make up the runtime system have been reorganized to 
decrease the number of costly inter-module calls. Each module is relatively more 
self-contained. In the previous irnplernentation, many calls to system procedures 
resulted in a chain of intermodule references which resulted in thrashing on the 
PDP-Il. In most cases a call to a system procedure now requires at most a single 
system module. 

A preliminary version of a debugging module has been written and utilized 
to some extent. 

Language Design 

There have been some changes to the language, primarily to support the new 
runtime implementation. 

OWN arrays are no longer handled any differently than other OWN variables. 
An OWN array's allocation is now under programmer control. An OWN array's 
declaration may no longer include initialization values. Instead, an INIT 
statement is provided which can initialize any array with constant values. 

To reduce the number of intermodule calls, and thus the amount of potential 
suapping and the extra code executed for the calls, the concept of "compiletime 
libraries" has been introduced. A compiletime library is a file containing 
procedure bodies that are to be "compiled into" a number of different modules 

25 J. Lederberg & E. Feigenbaum 


